
Comments are welcome.  This is for proceedings or a paper later on, so
any comments are very welcome.
The two Figures are at:

Fig.1 (time series) at 
ftp://ftpprd.ncep.noaa.gov/pub/cpc/wd51hd/miscel/heightbreedtimeseries.gif

Fig.2 (Maps of modes 1 and 2) at 
ftp://ftpprd.ncep.noaa.gov/pub/cpc/wd51hd/miscel/breed1.gif

-------------------------------------------------------------------
You could look at modes 3-6 if  you wish at.
ftp://ftpprd.ncep.noaa.gov/pub/cpc/wd51hd/miscel/breed2.gif
ftp://ftpprd.ncep.noaa.gov/pub/cpc/wd51hd/miscel/breed3.gif

The leading EOFs and EOTs alluded to are to be seen at
ftp://ftpprd.ncep.noaa.gov/pub/cpc/wd51hd/ake/daily/normeof1.gif 
and
ftp://ftpprd.ncep.noaa.gov/pub/cpc/wd51hd/ake/daily/norm1.gif 



Calculating the Fastest Growing Modes by Empirical Means.

H. M. van den Dool

1. Introduction
Traditionally instability of atmospheric flow has been gauged by supplying a particular
perturbation to a linearized dynamical operator. The operator is based either on a simplified
analytical version of the governing equations, or on a  numerical model  and a given basic state
(usually assumed constant). Here we will explore the appearance of the fastest growing (or least
damped) modes in an operator based on data. It turns out that familiar low frequency modes, such
as PNA and (N)AO like structures, can easily be cultured from daily data as complex modes with
an overall growth rate, a period, two spatial maps, and two associated time series. It is thus
suggested that these structures are (almost) unstable modes that grow by drawing energy from the
mean flow (a full 3D basic state). As a slight departure from traditional studies we also argue that
(1) the time series of the modes, although periodic, do not have to be sine and cosine and (2) the
notion of Explained Variance in observed data by each mode separately does apply under certain
restrictions. 

2. The data.
Given is a space time data set X(s,t), in this case X is the instantaneous daily 500 mb geopotential
height taken from NCEP-NCAR Reanalysis - s is a spatial coordinate (5o lat by 10o lon grid), and
t is time. We form anomalies by subtracting a harmonically smoothed 1979-1995 daily
climatology, appropriate for the time of day, produced by Schemm et al (1997). We consider the
domain 20N to the North Pole. The data set X is pruned as follows. In 1968 we take the field for
January, 1, 3, 5, ... 23 at 0Z, i.e. twelve fields in one year. Similarly for 1969 through 1992, for a
total of 300 fields during 25 years. We now have X(s,t), where t=1, 300, representing a great
diversity of NH January flow. The time t is a counter for both regular time and annual increments,
all in one. (The calculations below are actually insensitive to scrambling t). X(s,t) is considered
the historical library. Formed in similar fashion is a 2nd distinct data set X(s,t+)t), which is the
state of field X at a time )t later - this is where knowledge about time evolution comes in. The
time increment )t is arbitrary, and while we have results for )t ranging from 6 hours to 5days, 
most results shown below are based on )t=2days. 

3. Constructed Analogue
Given an Initial Condition, XIC (s, t0) at time t0 . We express XIC (s, t0) as a linear combination of
all fields in the historical library, i.e.

                  300
XIC (s, t0) . XCA(s)  /  E  "(t) X(s,t)         (1)

                   t=1
The determination of the weights "(t) for a non-orthogonal base X(s,t) is non-trivial -  this aspect
is key to the construction of an analogue, the details can be found in Van den Dool(1994), see
Appendix for a brief recipe of finding the weights. Except for some pathological cases, a set of
300 weights "(t) can always be found so as to satisfy the left hand side of (1) to within a tolerance



,, which can be made as small as one wants.  In order to find "(t) we need to truncate X(s,t) in a
reduced degree of freedom space and here we have chosen 50 EOTs (Van den Dool et al 2000),
50 such functions explain about 87% of the variance in the 0Z 1968-1992 data set. ( 50 EOFs
explain 93.5% of the variance.)

4. Constructed Analogue Forecast
Equation (1) is purely diagnostic. We now submit that given the initial condition we can make a
forecast with some skill by

                                   300
XF (s, t0+)t)   =  E "(t) X(s, t +)t)         (2)

         t=1

The calculation for (2) is trivial, the underlying assumptions are not. We ‘persist’ the weights "(t)

resulting from (1) and linearly combine the X(s,t+)t) so as to arrive at a forecast to which XIC (s,

t0) will evolve over )t. Note that the calculation of "(t) had nothing to do with )t, so the forecast
method is intuitive, and not based on minimizing some rms error for lead )t forecasts. This is
important in considering growing modes. While all statistical forecast methods, if based on
minimizing rms error, damp the forecast anomaly amplitude to zero as skill goes down, the
constructed analogue forecast is unconstrained and produces forecasts with amplitude out to very
long lead.

5. Culturing growing modes
The purpose of this paper is not at all to dwell on the skill of this forecast method, but rather on
the question as to which structure(s) appear when applying the construction method repeatedly.

This repetition starts by making a new constructed analogue, this time to XF (s, t0+)t) - this

yields a new set "(t), which allows us to make a new forecast using (2). In short, writing F as

short hand for XF (s, t0+)t), one can write  

Fi+1 = - { Fi }     (3), 
where forecast # i+1 is obtained from forecast #  i by applying an operator -, which combines

step (1) and (2) into one. Along with Fi we have "(t) changing for each i. This process is stable if

we renormalize at each iteration, i.e. make | Fi+1 | = |  Fi |  (where | | is a norm based on summing
the square of F with cosine weighting over space). This avoids growth to infinity or damping to

zero. In the process of expressing Fi at each iteration as a linear combination of X(s,t) we freeze
the annual cycle in January, or reset the clock in that aspect.  After many iterations (hundreds or

thousands, depending...), we save a sequence  Fi , where i = 501 to 1000 for example, and analyze
this synthetic data set by using a traditional EOT analysis. The counter i (iteration) may also be
interpreted as time (but now in perpetual season mode), so we analyze a synthetic data set F(s,t).
In nearly all cases studied we appear to have converged to a single complex mode M(s,t) which
can be described as 

M (s,t) = G  [ A (s) f(t) + B (s) g(t) ]

where G is the overall growth, A and B (s) are two spatial maps, and f(t) and g(t) are periodic
time series multiplying each map. Here t equals the counter i. Growth G may or may not be
exponential ( e Ft ) as in Simmons et al(1983) and Anderson(1991) - below G is simply expressed
as percentage amplitude growth per 24 hours. Both the maps and the time series are to be



determined by the process described above. Compared to Simmons et al (1983), or Linear Inverse
Modelling (Penland and Magorian 1993) we appear to have one less constraint, because the time
series are not assumed to be sine and cosine. The maps A and B turn out to be spatially
orthogonal, while f and g are temporally uncorrelated periodic functions with period T. The

instantaneous growth rate defined as   | Fi+1 | / |  Fi | before renormalization of  | Fi+1 | , while
averaging out to the growth rate F, can be an arbitrary function of time and is periodic with period
T/2. The structure that survives the iterations (i.e. comes out first) is either the fastest growing or
the least damped mode. The time series look like a deformed sine/cosine pair, i.e. one time series
is saw-tooth like, while the other has large residence time at the extremes, and fast zero crossings. 

6. Results.
An example for )t=2 days may clarify the above. Shown in Fig.1 are the g and f time series (blue
and red) of the 1st mode in the synthetic data, while Fig.2 (top row) shows the two spatial maps.
Loosely speaking we go from map A to map B in a quarter period, then to the negative of map A,
the negative of map B and return to map A after T days, where T may be non-integer. In this case,
map A looks like the PNA, while map B is somewhat like (N)AO, but we stress that the modes
thus produced are not the same as leading EOFs or one point teleconnection maps. The overall
growth rate is massaged out of this display, but can be seen in Fig.1 (green curve). In the mean
this least damped mode decays at 4.5% per day, but the actual damping rate varies between 3.68
and 5.16% per day over T/2. The period of this 1st mode is roughly 630 days, clearly a low
frequency mode, which, rather strikingly, was distilled here from daily data arranged in 23 day
sequences at two day interval from 25 different years. The notion of a period (as in the period of a
periodic function) still holds here, although the time series are not single harmonics, but have a
spectrum. In terms of a general purpose computer code we found it difficult to determine T from
the synthetic data F(s,t).
The repeated application of operator  -  to an arbitrary initial condition, with renormalization at
each step, is similar to a power method to find the (complex) eigenvector of the (non-symmetric)
- .  Finding the first mode was described above. We find the 2nd mode by removing from X(s,t)
the projection of X(s,t) onto the first mode, and recalculating - etc, etc, and so on for mode 3, 4,
5 and 6. Table 1 gives pertinent information about the first 6 modes. The period and  the growth
rate are classical attributes of normal modes. Here we add Explained Variance (EV) (in the
X(s,t)) data, as an interesting and new side issue. One would like to know whether the fastest
(least damped) growing modes are a curiosity, or that they really mean something in the world
around us. One way of expressing that is to calculate EV, and in a sense we are lucky that, by our
construction, the real and imaginary parts are orthogonal, and that all maps of subsequent modes
are orthogonal to the previous maps, such that a unique EV by mode does exist. Table 1 shows
long periods, mildly negative growth rates, and fairly high EV. While the order in which modes
are selected is determined by growth rate alone, they still, as it happens so, order approximately in
terms of EV. One might interpret this as a sign that, given random forcing and non-linearity, the
least damped modes have the highest probability to maintain amplitude, and be naturally selected
to ‘explain’ variance in the real world. The precise damping rates (5% loss per day) should not be
taken that literally - for deltat=6 hours growth is 6% positive for leading modes.

7. Discussion
-)We found the resulting modes to be independent of the initial condition (except polarity and
phase). 



-) Sometimes (often!) the period is so long that a very long synthetic data series would have to be
produced to determine whether or not the period is less than infinity. For all intents and purposes
we rounded off to zero frequency, or T=4, if more than 1000 days of integration would have been
needed. In the case of zero frequency, the oscillation is stuck in one map of fixed polarity plus
overall growth or decay. The 2nd mode in Fig.2 turns out to be zero frequency. If we had
produced data for i=501 to 600 only, we might have concluded that the two maps now combined
into one complex mode #1 (top Fig.2) are two zero frequency modes. Indeed, when choosing
)t=1 or 3 days, the PNA and NAO like modes may appear as zero frequency, or coupled to each
other or to yet another mode, but in all cases the period is very long. With such low damping rates
it takes only minimal forcing to make these modes persist for a long time.
-) Sometimes the procedure described above does not appear to converge, i.e. the synthetic data
F(s,t) contains more than a single complex mode, no matter how long we iterate. This could either
be a failure of the iteration method in a case where the growth rates of 2 or more different modes
are very very close, or perhaps we need to entertain the thought of generalized modes that consist
of more than 2 maps and 2 time series. 
-) One could imagine doing the same experiment with a (any) numerical model. Take an initial
condition, and declare it to be a Jan 15 IC. Make a model forecast for Jan 16 ()t=1day). Take
departure from Jan 16 climatology and add Jan 15 climatology back in, and make a new forecast
for Jan 16. Etc. In fact, for small deltat, this is one way of checking whether the eigenvectors
(calculated directly from the operator) are correct. It is difficult to calculate more than one mode
this way. Because the climatology may not be a model solution the procedure may actually
involve 2 model forecasts, the difference between which is re-scaled after each forward step. 
-) The non-sinusoidal character of the periodic time series has been discussed before (Frederikson
and Branstator 2001; FB) - the distinguishing feature for this being that the basic state is not an
absolute constant (Mak personal communication). In FB the annual cycle in basic state was
invoked to argue non-constancy of the basic state, but in the approach reported here even the
basic state in a perpetual run would be not be a constant in the sense that energy goes from the
basic state to the perturbation. Indeed our analysis of data from a perpetual barotropic model
shows growing modes with non-sinusoidal time series.

Figure Legends:
Fig.1: Time series of fastest growing mode 1, for )t = 2 days, for an arbitrary portion of the time
series slightly in excess of one period. Time series are scaled to vary from -1 to +1. Blue and red
are the time series multiplying the real and imaginary part. The green curve represents the
instantaneous growth rate (% amplitude change per day).
Fig. 2: The spatial maps of mode 1 (top row), and mode 2 (bottom row). On the left the real part,
and on the right the imaginary part. The second mode has zero frequency and its imaginary part is
zero. Units are gpm/100, multiplied further by the inverse of re-scaling (close to unity usually)
applied to the time series.  

=======================================================
Table 1. The period (days), the growth rate (% per day) and Explained Variance (%) in the
original (untruncated) data of fastest growing modes 1 to 6 in January,  0Z 500 mb height, 20-
90NH, and )t = 2 days.



Period growth rate Explained Variance  Cumulative EV
Units: (Days) (% per day)  (%)          (%)

Real   / Imaginary
Mode #

1 630 -4.5 7.7 9.1 16.8

2 4 -7.8 4.5 – 21.3

3 58 -8.2 4.8 3.9 30.0

4 28 -9.7 2.7 4.5 37.2

5 58 -11.3 5.5 3.6 46.1

6 22 -15.2 2.8 2.2 51.1
=======================================================

References:
Anderson, J.L., 1991: The robustness of barotropic unstable modes in a zonally varying

atmosphere. J. Atmos. Sci., 48, 2393-2410.
Frederiksen, Jorgen S., and Grant Branstator, 2001: Seasonal and Intraseasonal Variability of

Large-Scale Barotropic Modes. Journal of the  Atmospheric Sciences: Vol. 58, No. 1, pp.
50–69.

Penland, C. and Th. Magorian, 1993:  Prediction of Niño 3 Sea Surface Temperatures Using
Linear Inverse Modeling. Journal of Climate: Vol. 6, No. 6, pp. 1067–1076.

Schemm, J., H. van den Dool, J. Huang and S. Saha: Construction of daily climatology based on
the 17-year NCEP/NCAR Reanalysis. Proceedings of 1st Reanalysis workshop.
WMO/TD-No. 876, WCRP-104, pp290-293, Silver Spring, MD, 27-31, Oct. 1997.

Simmons, A., J. M. Wallace, and G. W. Branstator, 1983: Barotropic wave propagation and
instability, and atmospheric teleconnection patterns. J. Atmos. Sci., 40, 2383-2398.

Van den Dool, H. M., 1994: Searching for analogues, how long must one wait?  Tellus, 46A,
314-324.

Van den Dool, H. M., S. Saha and A. Johansson, 2000: Empirical Orthogonal Teleconnections. J.
Climate, 13, 1421-1435.



Appendix

The coefficient "(t) in expression (1) are determined as follows:
1) The data set X(s,t) is truncated to N  EOFs, where N is 50 for daily Z500. Below X(s,t)
denotes truncated fields.
2) The initial conditions is likewise truncated by projection onto the same 50 EOFs.
3) The ‘normal’ equation is set up for the problem:

A " = b    (A1)
where A is a 300 by 300 matrix with elements a(i,j) =  G X(s , ti )X(s , tj ), i=1,300; j=1,300 and
summation is over space with cosine weighting. (The summation may alternatively be performed

in EOF spectral space.) The vector b has elements  b(j) = G XIC(s)X(s , tj ), and " is the vector of
length 300 we want to solve for.
4) The matrix A is ‘ridged’ by adding a small positive constant to the main diagonal. This constant

is chosen large enough to make the resulting " reasonably insensitive to further changes in the
details of the calculations (such as truncation at 51/49 EOF, using EOT instead of EOF,
perturbing one of the X(s,t), etc etc).
5) A1 is solved by standard linear algebra techniques.


